Разделы







Компьютерная томография
Материалы / Компьютерная томография
Страница 5

Известно, что при одинаковой энергии рентгеновского излучения материал с большей относительной молекулярной массой будет поглощать рентгеновское излучение в большей степени, чем вещество с меньшей относительной молекулярной массой. Подобное ослабление рентгеновского пучка может быть легко зафиксировано. Однако на практике мы имеем дело с совершенно неоднородным объектом - телом человека. Поэтому часто случается, что детекторы фиксируют несколько рентгеновских пучков одинаковой интенсивности в то время, как они прошли через совершенно различные среды. Это наблюдается, например, при прохождении через однородный объект достаточной протяженности и неоднородный объект с такой же суммарной плотностью.

При продольной томографии разницу между плотностью отдельных участков определить невозможно, поскольку "тени" участков накладываются друг на друга. С помощью компьютерной томографии решена и эта задача, так как при вращении рентгеновской трубки вокруг тела пациента детекторы регистрируют 1,5 - 6 млн сигналов из различных точек (проекций) и, что особенно важно, каждая точка многократно проецируется на различные окружающие точки.

При регистрации ослабленного рентгеновского излучения на каждом детекторе возбуждается ток, соответствующий величине излучения, попадающего на детектор. В системе сбора данных ток от каждого детектора (500-2400 шт.) преобразуется в цифровой сигнал и после усиления подается в ЭВМ для обработки и хранения. Только после этого начинается собственно процесс восстановления изображения.

Восстановление изображения среза по сумме собранных проекций является чрезвычайно сложным процессом, и конечный результат представляет собой некую матрицу с относительными числами, соответствующую уровню поглощения каждой точки в отдельности.

В компьютерных томографах применяются матрицы первичного изображения 256х256, 320х320, 512х512 и 1024х1024 элементов. Качество изображения растет при увеличении числа детекторов, увеличении количества регистрируемых проекций за один оборот трубки и при увеличении первичной матрицы. Увеличение количества регистрируемых проекций ведет к повышению лучевой нагрузки, применение большей первичной матрицы — к увеличению времени обработки среза или необходимости устанавливать дополнительные специальные процессоры видеоизображения. [№ 2, стр. 10-13]

ПОЛУЧЕНИЕ КОМПЬЮТЕРНОЙ ТОМОГРАММЫ

Получение компьютерной томограммы (среза) головы на выбранном уровне основывается на выполнении следующих операций:

4. формирование требуемой ширины рентгеновского луча (коллимирование);

5. сканирование головы пучком рентгеновского излучения, осуществляемого движением (вращательным и поступательным) вокруг неподвижной головы пациента устройства "излучатель — детекторы";

6. измерение излучения и определение его ослабления с последующим преобразованием результатов в цифровую форму;

7. машинный (компьютерный) синтез томограммы по совокупности данных измерения, относящихся к выбранному слою;

8. построение изображения исследуемого слоя на экране видеомонитора (дисплея).

В системах компьютерных томографов сканирование и получение изображения происходят следующим образом. Рентгеновская трубка в режиме излучения "обходит" голову по дуге 240O, останавливаясь через каждые 3O этой дуги и делая продольное перемещение. На одной оси с рентгеновским излучателем закреплены детекторы - кристаллы йодистого натрия, преобразующие ионизирующее излучение в световое. Последнее попадает на фотоэлектронные умножители, превращающие эту видимую часть в электрические сигналы. Электрические сигналы подвергаются усилению, а затем преобразованию в цифры, которые вводят в ЭВМ. Рентгеновский луч, пройдя через среду поглощения, ослабляется пропорционально плотности тканей, встречающихся на его пути, и несет информацию о степени его ослабления в каждом положении сканирования. Интенсивность излучения во всех проекциях сравнивается с величиной сигнала, поступающего с контрольного детектора, регистрирующего исходную энергию излучения сразу же на выходе луча из рентгеновской трубки.

Страницы: 1 2 3 4 5 6 7

Смотрите также

Бюджетная система
Экономические и политические реформы, проводимые в России с начала девяностых годов, также не могли не затронуть сферу государственных финансов, и, в первую очередь, бюджетную систему. Государственн ...

Безопасность функционирования технологической системы
Безопасность функционирования технологической системы определяется не только состоянием самой системы, но и правильной работой всего персонала, обслуживающего систему. Главным виновником несчастных ...

Инновационный менеджмент
Появление в учебных планах российских вузов дисциплины «инновационный менеджмент» продиктовано требованиями жизни. В научно-технической и социально-экономической сферах наблюдаются тенде ...